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Introduction.

The theory of almost periodic functions had its origin 
in the problem, what functions f(x) = u (æ) + m (x) 

can be decomposed, in the interval —oe< x < oc, into 
pure oscillations, i. e. into oscillations of the form etÂrr. 
The problem stated in these general terms has evidently 
no definite meaning until the notion of “decomposition” 
has been strictly defined and this of course can be done 
in many different ways.

The first and most primitive way of interpreting the 
term would perhaps be to regard as decomposable only 
those functions which can be represented as the sum of 
a finite number of oscillations:

(1) S(.r) =
V = 1

We shall denote by A the class of such functions .$• (a*). 
But at the first attempt to develop the theory of unctions 
of this class we see that the definition is too narrow. In
deed the class A is not “closed” to limit processes, so that 
when working only with functions of the class A we should 
have to exclude from the start those operations which in
volve the idea of continuity in “functional space”.

We must therefore close the class A, that is we must 
extend it to a larger class C (A) consisting of all functions 
/ (.r) (including the functions of A itself) which are the 

1* 
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limits of sequences of functions s (x) of A. But here again 
the content of the class C (A) depends on the kind of the 
limit process employed.

The simplest limit process is that of ordinary con
vergence: f(x) is a limit-function of the class A if there 
is a sequence

(x) , s2 (æ) , . . . , ,Sn (x) , ...

of functions of A such that for every x

(2) /(x) = lim (ar).
n —> co

But the class C (A) to which this limit process leads is 
found to he too wide, in the sense that practically none 
of the characteristic properties of the functions s (.r) (those 
relating to oscillations) are conserved. In fact, as Besico
vitch [l]1 has shown, the above class C (A) includes all 
hounded continuous functions.

The same is true even when we demand that the con
vergence shall he uniform in every finite interval.

We are therefore led to consider only limit processes 
which involve some sort of uniformity in the whole inter
val — oc < æ < oc.

In the theory of a. p. (almost periodic) functions devel
oped by Bohr in his papers in Acta Mathematica il, 2, 3] 
the limit process employed was that of ordinary uniform 
convergence in the whole infinite interval — < x < oo.
The class C (A) corresponding to this limit process is the 
narrowest possible closure of the class A. But, as we 
shall see, the theory of larger closures C (A) derived from 
more general processes of uniform convergence can be 
treated simply as generalisation of the theory of the above

The list of papers quoted is given as an appendix. 
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closure C (A) in the sense that we can extend very many 
results directly, without repeating the arguments of their 
proof.

In § 1 of this paper we give a short outline of a part 
of the theory of a. p. functions. § 2 contains some general 
remarks on the generalisation of the theory to larger classes. 
Finally in § 3 we give in full detail an application of the 
principles lied down in § 2 to a particular generalisation 
of a. p. functions; for this purpose we choose the class of 
summable functions discussed by Stepanoff in his inter
esting paper in Math. Ann. [1], where such generalisations 
were studied for the first time.

§ 1-
For convenience and also in order to bring out as 

clearly as possible the similarity between the definitions 
and proofs of this paragraph and these of § 3 we intro
duce the following notation:

By
(3) F-lim/n(æ) = /‘(a?) 

we mean that fn(x) tends to f(x) uniformly in the whole 
interval — oo<x<oc. We shall call the upper bound of 
the difference | f (x)— g (x) | for—oc < x < oc the U-dis
tance between the functions f (x) and g (x) and 
shall denote it by Dv[fÇx), g (x) ; thus (3) can be written 
in the equivalent form

Du^fn^’ f(x) as n -> OC.

By Dv'_f(x)} we mean Dv f(x), o], i. e. the upper bound 
of I f(x) I in the interval —oc < x < oc.

A being as before the class of all finite sums
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s(x) \ p,
r = 1

where the Zr are real and different, and the ar arbitrary 
complex numbers, we denote by CV(A) the class ol’ all 
functions /'(.r) for each of which there is a sequence 
sn(x) of functions of A such that /’(a?) = C-lim sn (æ).

We proceed to establish some properties of functions 
of the class C[T (A), which follow directly from this de
finition.

1°. Every function /‘(.r) of Cv (A) is bounded for 
— oc < x < oc.

For, given f (x) we can choose an s (x) so that

7)^ [/■(#), s(x-)j < 1 ;

since s (x) is plainly bounded, the result follows from the 
inequality

Du Du ’ s + Du •

2°. Every function /(.v) of CV(A) is uniformly con
tinuous in the whole interval — oc < x < oo.

For, given g we can choose an s (x) such that

Dv f(x), s O)] <

,s(.r) is evidently uniformly continuous; we can therefore 
choose ô so that

79[s (x + 7i), s (x)] < I

From the inequality

for 7i I < 6 .

i\, [f(x + < Dv[s(x+h), s(.r)j + 2ß[.[/(,r), s(a-)

it now follows that for I h I < ö
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3°. The sum and the product of two functions of 
Cr(A) are again functions of Cv (A).

This follows at once from the fact that the sum and 
the product of two functions s(x) are functions s (rc).

In particular we observe that if f (x) belongs to Cr(A), 
then so does for every real value of Â.

4°. Every function f(a?) of Cr(A) has a mean value 
i. e.

exists; this is even true uniformly in
The property is obvious for any function s (a?) (the 

mean value in this case being the constant term in s(a?)). 
Choosing s (a?) so that Dr\f(x), s (,r)] is “small” the result 
follows in the usual way from the inequality

From the same inequality we see that if

(4) 
then

F-lim sn (ar) = /’(a?)

as n -> oc,

and further, for any real value of Z,

(5) M{s„ (x) -> M{ /(x) , as n oo.

For (4) implies

U-lim sn (a?) e~ax = /(a?) e~ax.

5°. For any function f(x) of Cr(A) the mean value 
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differs from zero lor at most an enumerable set of values 
of 2.

Let .sqCr), s2(.r), ... be a sequence of functions of A 
such that

F-lim sn (x) = f(x).

For each function s'n (,v) the mean value Af (sn (æ) e— 
differs from zero only for a finite set of values of 2, 
namely those occurring as the exponents in the polynomial 
expression for sn (x). Il follows that, except in at most an 
enumerable set of 2’s, M{sH(x) e~™x} is zero for every n, 
and so by (5) that a (2) = M {f(x) e~lkx} is zero except 
for at most an enumerable set of values of 2.

We can now denote these 2’s by

•^1 > ^2 ’ • • •

and the corresponding a (2) by

A i, A g, ... .

We express this symbolically by writing

(6) f(x) EA.é'1"1

and we call the series (finite or infinite) on the right the 
Fourier series of the function /‘(.t).

The Fourier series of a fonction s (x) of A evidently 
coincides with its polynomial expression (1). From (5) we 
see that, as n—>oc, the polynomial expression of sn(x) 
goes over by a “formal” limit passage into the Fourier 
series of f(x); this already shows that Fourier series are 
likely to play an important part in the study of functions 
of Cr(A).

We next consider a property of functions of Cr(A) of 
a different kind. We call a real number z = r (t) a
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translation number of the function /‘(æ) belonging
to f if

N

Corresponding to any given function s (a?) = arel^rX

of the class A
i

there exist for any given e > 0 an infinite
number of translation numbers, and the set of these
numbers t = t (*) is even “relatively dense’’ in the 
sense that any interval of a certain length / = / (é) con
tains at least one such number r (é). This is an immediate 
consequence of the Bohl-Wennberg theorem on dio
phantine approximations (see f. inst. Bohr [1], p. 120), which 
states that for an arbitrarily small d the A7 diophantine in
equalities 1

Âr t I < ô (mod. 2 n) (r = 1, 2, . . ., A7)

have relatively dense solutions with respect to t. In the 
ordinary way (i. e. by approaching the function /*(.?) by 
a function s(x) such that '/*(#), .s-(.r) is small/ we see 
that the functions /’(rr) of Cî;(A) also possess the above 
property, namely that for every s > 0 the ^-translation 
numbers exist and are relatively dense.

Functions which are continuous in —oc < æ < oc and 
possess this property are said to be almost periodic; 
we have just seen that every function of A, and even 
every function of Cr(A), is almost periodic.

The main result of the theory of a. p. (almost periodic) 
functions is that the converse of the last statement is also 
true; every a. p. function is a function of Cf7(A), so that 

The class Cr(A) is identical with the class of a. p. functions.

1 By I a I < b (mod. c), where a, b, c are real and b and c positive, 
we mean that there exists an integral n such that |a — nc | < b.
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Naturally we shall not enter the proof of this theorem 
which would involve the development of almost the whole 
theory of a. p. functions. In proving the identity of the 
class C[r(A) with the class of a. p. functions Bohr had 
first to show that the latter class possesses all the above 
properties 1°, . . . , 5° of the class Cr(A); and though this 
was not the main difficulty of the investigation, it never
theless involved considerations of a different character from 
the immediate deductions employed above in establishing 
these properties for the class C^CA). The main difficulty 
to be overcome was the proof of the “fundamental theo
rem” (Parseval’s theorem) namely

Af{|/-(.r)|2J = Z |A,.|2,

from which follows as an immediate corollary the “unique
ness theorem”:

An a. p. function is uniquely determined by its Fourier 
series, i. e. two different a. p. functions cannot have the 
same Fourier series.

When the identity of the class C[7(A) and the class of 
a. p. functions has been established the question naturally 
arises: given an a. p. function f(x), actually to find a se
quence of functions sn (x) such that

F-lim sn (x) = f(x).

A method of obtaining such a sequence of functions was 
given by Bohr in his second paper in Acta Math.; his 
sums sn(x) contained as exponents only exponents from 
the Fourier series of f(x), a fact of importance in the 
extension of the theory to functions of a complex variable. 
An essentially simpler method of obtaining such approxim
ation functions sn (x) was given by Bochner [1], who 
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succcded in extending the Fejér summation method of 
classical Fourier theory to the class of a. p. functions. Like 
Bohr, he started from the representation of the “Fourier 
exponents” ^/r with the help of a “base” «t, «2, . . .. By 
a base we mean a sequence of linearly independent1 
positive numbers «t, «2, • • • (which generally is enumer
able but in particular cases may be finite) such that every 
the «’s Av may be expressed as a finite linear form in 
exponent with rational coefficients,

Ar = l‘r>1 «t + Fr,2 «2 + ■ • • + Vv,qr aqr-

Fejér in his summation of Fourier series of pure periodic 
functions /(a*), with period 2 tt , used as approximation 
sums the expressions

(æ) = å \ /o+o co= M ! /<æ+o/7- (o ' • 
2 71 J— n

where the “kernel” fTn (0 was given by

Bochner replaced Fejér’s simple kernel by a finite pro
duct of such kernels

77(0 = • • ■ f/n„(ßPt) =--

1 alf a2, ... are said to be linearly independent if no equation of
the form fj«1 + r2 «2 + • • • + ry« v ~ 0

holds, where JV > 1 and the r’s are rational, not all naught.
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where the /î’s are linearly independent numbers. This 
composite kernel has the same characteristic properties as 
the Fejer kernel — it is always positive and its mean
value Al{/J(t)} is equal to 1 (the constant term in the 
polynomial expansion ol‘ H (t) being 1 on account of the 
linear independence of the /?’s). Bochner considers an ex
pression of the form

M { f(x + 0 ff„,

which, since

to the finite sumis equal

s (.r)

where
*3(7)

is
the Fourier

carried out in 
sooner or later

to be interpreted as zero when 
(7) of «’s is not an exponent

the linear com
in

2Ï
"i

>’■ x

n < v <11
P — V — P

( and Ar 
bination 
series of /’(rr)). Bochners result is:

The sum s (re) tends uniformly to f(x),
x, XT , n\xV2->oc, ... and —L-+oo,

! Aa !
other words, provided the limit process is 
such a way that every exponent .d}, occurs 
in s (x)-

As we shall have to prove in § 3 an analogous theorem 
for a more general class of functions, we next give a proof 
of Bochners theorem which, though perhaps not so elegant 
as Bochner’s own, is better adapted to generalisation. Like
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Bochner’s, our proof depends on the fundamental theorem. 
We start from the following property of a. p. functions, 
which (see Bohr, II p. 110) is a fairly direct consequence 
of the fundamental theorem :

“To any e corresponds an integer M and a positive 
number // such that every solution t of the system of 
diophantine inequalities

Av 11 < (mod. 2 ?r), . . . , I AM /1 < // (mod. 2 ;r)

is a translation number t («) of the given a. p. function”.
Since each exponent Av can be represented as a finite 

linear form in the «’s with rational coefficients, we have 
the immediate corollary:

To any e correspond integers P and Q and a positive 
number J < n such that every solution t of the system 
of diophantine inequalities

(8) < ô (mod. 2 Tt),
ap
Q

< a (mod. 2 tt)

is a translation number of the given a. p. function.

Let It denote the set of all values of t satisfying (8) 
and Z2 the set of all other values of t. We can write the
kernel

// (o = i/ni

as the sum of two kernels

//(0 = //'(0+z/"(0 
where

//'(Z) = //(/), 17" (0 = 0 for/c/p
77'(7) = 0, // (/> = 77(7) for t <Z I2.

We may further assume that p > P and . . . , Np all 
> Q, where P and Q are the integers (depending on t) 
which occur in (8).
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F rom
s (æ) — /(æ) = M { (f(x + 0 — /(æ)) H (0 }

we have

1 « (æ) — /(æ) I S ( I /'O + 0 — /'(æ) I H' (0 }
+ M{\f(x+1) — f(x) I n" (/)}

where M {g (/) } for a positive function g (t) (which 
need not necessarily possess a mean value) denotes 

limsup—\ g (/) dt as 7’-> oc. Thus
2 ■* J— r

(Dp [s (x), /■ (x) j 7< Ä { I), [f(x+f), f(x)] n' (/) }
(9) I + M { Dv [f(x + f), /(x)J n" (t) !

where the distance I)v on the right hand side is taken 
with respect to x, t remaining fixed.

Since for all values of t belonging to /t

nr; [f(x +t), f(x)] <: |

while for all other values of /

n' (0 - o
we have at once

I M{Dv[f(x + f), f(x)] II' (f) ;

(10) I S

Writing K = 7>ir if(æ)j > we have for the second term 
on the right hand side of (9)

(11) M{Dv[f(x + f), f(x)\ II" (f) } < 2KM{ TI" (1)}.

Let (q — 1, 2, . . . , P) denote the set of values t, at
which the Q-th of the inequalities (8) is not satisfied.
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Putting
2Xq!

//* and — 0 for t outside /„ „

This set ( consists of the whole /-axis with the exception 
of small intervals of length 2 lq — 2^ with their centres 

t Ci<lat the zeros of sin ( . Since ATg > Q and Nq\ is thus a
“ (■ cc( I

multiple of Q, we observe that the zeros of sin Ny-- are 

included among these of sin

we evidently have for — oc < / < oc
p

(12) U" (1) < //^, ■ //-A, . . . ff„,+ . . .

since for any t in /2 least one of the inequalities (8) 
is not satisfied and thus at least one of the P term of this 
sum is equal to H (/). Therefore

p

M { 77" (7) } < M { //,*„ • //„, 77„, . . . 77„,,+1 . . . n„p }.
q=1

As the product nni . . . nnq_x Hnq+X • • • nnp is a finite sum 
s(x) == with the constant term 1 whose other
exponents do not satisfy any relation of the form Zr + raq 
— 0 with rational r, the mean value under the sign of 
summation is simply equal to the mean value M\IIn j, 
both being evidently equal to the constant term in the 
ordinary Fourier series for the pure periodic function

* / AT9 !\/Inq I with period 2 wq — 2n—^~}. Thus

(13) m ! n" (I)} < JS » ! n„.,
9 = 1
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Further

1

<
H <7

Thus by (13)

S{z7"(0} <
Ou putting

H<7

where P,

(i diq

Ilq Mq Ctq
16

7T f) Q

1 <11
Q- I

2V?!<W

> v '<5Qe ’•
we have therefore

for p > P, Nq > (), nq > CWf/! (</ = 1, . . ., P), 
(), C depend only on e

Q . E . I).

2 KM {11" (t)} < I
and thus finally by (9), (10), (11)

Pr [s (.r), /‘(.r)] < e

____ ZÏQ
<7 = 1

6
cK)

. « ^<7 aq ,
1 1" w1

r dt 16 (.V,!)2 
\ E riq M(J OCq Iq

i Cw</\ —------------

W<7 J. /?</ . 2 C((J 7 HqWq
2 A',,!

§ 2.
A natural way of generalising the theory of a. p. functions 

is to use, in closing the class A, a limit process more 
general than the simple F-lim employed in § 1. Let G de
note such a limit process. Then the first and main problem 
which arises is to determine the generalised almost periodic 
properties which characterise the class CG (A), the closure 
of A by the limit process G.
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But once this problem lias been solved in the original 
theory its solution for generalised classes may be reduced 
to considerations concerning only the limit process G and 
its effect on almost-periodicity. StepanofT himself proceeded 
along these lines in the paper already quoted and thus 
escaped entering once more into the difficulties involved 
in establishing the fundamental theorem or the uniqueness 
theorem. It is however possible to go further in this way. 
We have only to take into account and use to the full 
the fact that the G-lim process employed in the original 
theory, while general enough to bring out the main pro
perties of almost periodicity, is at the same time the 
“narrowest” of all limit processes of the kind described 
in the introduction. It is the narrowest in the sense that 
the closure of the class A by any limit process G coincides 
with the closure by G of the class Cr(A) already closed 
by the G-process, i. e. in symbols

Cg(A) = CG(Cr(A>).
Thus

Cg(A) = CG(a. p. functions)

which shows that the problem of characterising the class 
CG (A) by almost periodic properties is equivalent to the 
investigation of the effect of the limit process G on ordinary 
almost periodicity.

Once the character of the almost periodicity corres
ponding to a given process G has been determined, the 
next main question is to find an “algorithm” which, 
applied to a function f(x) possessing this type of almost 
periodicity, will lead to a sequence sn (x) of functions of A 
which approach the function f(x) in the sense of the given 
limit process G, i. e. for which

Vidensk. Selsk. Math.-fys.Mcdd. VIII,5. 2
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G-lim ,s“n (a?) = /(.r), as n -> oo.

The natural method of treating this question will generally 
be by establishing the existence of the Fourier series of 
f(x) and applying to it a suitable method of summation.

We now carry out an investigation of the type just 
outlined, obtaining finally what is perhaps the most natural 
generalisation of the class of a. p. functions, namely the 
class of integrable (L) functions considered by StepanofT. 
The very fact that this class of functions — delined by 
StepanofT himself through generalised almost periodic pro
perties — can also be characterised as the closure of the 
class of (ordinary) a. p. functions by a certain limit pro
cess (the 5-process given below) has already been pointed 
out by Bochner [2].

§3.
The functions which we have to consider in this section 

are assumed to be defined almost everywhere in the whole 
interval — oc < x < and to be integrable (L) over any 
finite interval. We begin by introducing a notation analogous 
to that of § 1. We say that the function /'(.r) is the öS
limit (StepanofT limit) of the sequence fn(x) — 
and write
(14) /‘(æ) = S-lim (a-)
if

Upper bound \ |/(£) —4 (£) | -> 0, as zz^oc1.
— OO < X < OC • a-

By the S’-d is tance Ds f(x), g(x)\ between the func
tions f(x) and g (x) we mean

1 Evidently the definition of the S-limit will not be altered if we
. «-v + 1 +k

replace \ | | by \ | | d£, where k is an arbitrary positive constant.
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px’+l

Upper bound \ \ f($) —g ('§) \ ;
— oc> < x < oc J.T

thus the equation (14) is equivalent to

Ds \f(x), fn (æ)] —> 0, as n -> oc.

Further by 74s [ f(x) ] we mean I)s\f(x), o], i. e. the 
f*.r+l

upper bound of \ |/'($)|c/^ in the interval •—oc < # < oc. 
•Jx

This section is devoted to the study of the class CS(A),
i. e. the closure of the class A by the 5-limit process.

As in § 1 we begin by establishing a number of pro
perties of the functions of Cs (A) which follow directly 
from their definition as S-limits of functions s (rr) of A. 
The deduction of these properties is on the same lines as 
before, the only difference being that the [/-processes of 
§ 1 are here replaced by S-processes. Our notation is 
essentially that of Bochner [2].

1°. Every function f(x) of CS(A) is “S-bounded” in 
— oc < x < oc, i. e. Ds f(x) is finite.

The property follows from the inequality

[ /‘(æ')l < [/(æ)> s (æ)] + Is (X')J
in the same way as in § 1 s(x), being bounded, is a for
tiori S-bounded).

2°. Every function f(x) of Cs (A) is “S -uniformly 
continuous” in — oc < x < oc, i. e.

Ds [f(x + h), f(x)\ < s for I /i I < d.

In the same way as before the property follows from 
the inequality

Ds [f(x + h), f(x)\ < Ds [s(x + h), s (x)] + 2DS \f(x), s(x)].
2*
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3.1”. Evidently the sum of two functions of Cs (A) is 
again a function of CS(A).

3.2”. If /'(a*) belongs to CS(A), then the product 
f(x)e'^x belongs to Cs (A) for every real z.

For
Ds h\x)é>-\ s (x) = Ds [f(x), s(x)J .

in /).

dx

for T> 1.

<1
T

as T -> ocM</-(x)} = lim I

p'+ETJ + l
\ l/Gr)—s(æ) I t/a?

(The property does not hold for the product of any two 
functions of CS(A), since such a product may not be 
integrable).

4”. Every function f(x) of Cs (A)

P'+T
\ /■(æ)drr,
»J/

(and the limit even exists uniformly
This follows from the inequality

From the same inequality we see that if

5-1 i m sn (x) — f(x)
then

M ( sn (x) ) -> M { /■(#) }

and, more generally,

M { s„ (x) } -> M { f(.v) ea 1 )
as n -> oc.

5°. Repealing word for word the argument of § 1 we 
can now establish the existence of a Fourier series, 
write

/■(.o
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in the same sense as before, and assert that when 
S-lim sn (æ) — fix) the Fourier series of fix) may be ob
tained from the expressions of sn(x) by a formal limit 
passage.

We now pass to the main part of the theory of the 
class Cs (A), the investigation of the almost periodic pro
perties characteristic of the class.

We shall in the future refer to the translation numbers 
defined in § 1 as {/-translation numbers. We now intro
duce another kind of translation numbers, defined as fol
lows: A number t is said to be an S-translation 
number of the function fix) belonging to é, if

[fGr+ r), fix)] < e.

We call fix) an S. a. p. function if for every positive e 
there exists a relatively dense set (in the sense of § 1) 
of 5-translation numbers t(é) of fix).

Theorem. The class CsiA) is identical with the class 
of S. a. p. functions.

In proving the identity of the class Cs (A) with the 
class of S. a. p. functions we shall, so far as the latter 
class is concerned, use nothing but its definition; we do 
not even need to begin, as Stepanoff did in his develop
ment of the theory, by establishing the elementary pro
perties, just deduced for Cs (A) as immediate consequences 
of its definition. In accordance with § 2 we base our proof 
on the fact that the class Cs (A) is identical with the class

Cs (a. p. functions).

For convenience we shall in future denote an a. p. function 
by <ïix).
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1. That every function f(x) of CS (A) is an S. a. p. function, 
is obvious. We have only to choose cf(x) in the inequality

Ds[f(x + r), f(x)] < I)s (j(x+r), a(x)j + 2Ds[/’(x), <;(x) 

so that Ds[f(x), tf(x’)] <-J, to ensure that every U-trans- 
o

lation number of cr (x) (which is a fortiori an ^-translation 
number of d(x)) belonging to — shall be an S-translation 

number of /’(x) belonging to e.
2. We now proceed to the proof of the converse result, 

namely that every <S. a. p. function is the S-limit of a se
quence of functions a(x). For this purpose we consider 
the functions

»O) = T \ /(J)

already studied by Stepanoff. We shall prove first that 
yj(x) (which is evidently continuous) is an a. p. function 
cr(x), and secondly that

f(x) — S-lim (j>rj(x), as d 0.

We may suppose â < 1.
To prove the first statement we observe that every 

S’-translation number of f(x) which belongs to ed is also 
a {/-translation number of y^(x) belonging to e. Given such 
an S-translation number t = t(cô) we have in fact for 
every x

iI (x + t) — ep# (x) I = \ (/ (Ï ) — /*(£)) d £
I Vx

i rvS \ \ + t) — t (Ï) \ (1$ S •
l'x
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To prove the second statement we first observe that 
any S-translation number t of /*(#) belonging to e is also 
an S-translation number of </j(.r) belonging to 2 e. For we 
have for every x0

Z»xo+1 ;«.r0 + l + d

\ I + t) — yj(x)\dx S J \ dx \ I /(? + *0 I d £
•J.To • .To MX

/'«.To + l + d <*x0 + 2
<i\ |^-h)-/wA dxs\ i/a+t)-/wi</?<2f.

°»lr0

What we have to prove is that Ds f(x), yj(x) < e for 
d < ô0(f), i. e. that for every x0

€

VX0 + T

Let / =

length I contains an S-translation number r = tof f(x) 

which (as we have just seen) is also an S-translation 

number, belonging to of every (p<y(x). Corresponding 

to the value of rr0 in (15) we select a translation number 

r so P°int æo + r ^es in the interval (0, Z). Then

be a number such that every interval of
(|)of/-(x)

Thus the proof will be complete when we have established 
the following simple proposition, which we state as an 
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independent lemma since it may be of use in other pro
blems involving the smoothing of an integrable function.

Lemma. Let f(x) be a function integrable (L) in a finite 
interval (a, b), and let

= f(£)d£ (a<x<b — d).
U »'x

Then, for any ß < b,

lim \ |/‘(.r)—dx = 0.
d—> 0

We denote the number b — ß by d. Then y$(x) is de
fined in the interval (a, ß) for every d < d. By the theo
rem on the differentiation of a Lebesgue integral we have 
that (x) -> / (t) as J-> 0 almost everywhere in (a, ß).

We first prove that to any t > 0 corresponds an q > 0 
such that
(16) \ I I dx < t

V
E

for all values of d (< d) and for every set E c («, ß) 
such that m E < //. We write

\ I yXæ) I dx S A \ dx \ I /(£) I 5 = A Ç \ I /*(£> \dxd^

E E G

where G denotes the two-dimensional set of points in the 
x, ‘î plane

x c E, x < 'î < x + ô

whose measure
777 G — d • 777 E.

On making the simple transformation
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the set G goes over to a set G' in the x', plane, of 
measure

(17) m G ' = .? • ni G = d • ni E ,o

which evidently lies inside the constant (independent of å) 
parallelogram P whose vertices are the points (a — d, a), 
(a, d), (b, b), (b— d, b). And

(18) 4 \ \ l/W I dxd'i = 4 \ \ I/*(£') I dx d%'.
° J » J »J

G G'

Since the function /Q ), regarded as a function of the 
two variables x, is integrable in the parallelogram P, 
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the integral on the right can be made less than e by 
taking m E sufficiently small (< /;), for by (17) this makes 
m(F “small”.

(16) being established, the proof of the lemma may be 
completed in the usual way: We choose so that 
\ I /(æ) I dx < e for m E < r/, and then chose so small
E
that for ô < the set F = F# of points of (a, /?) at which

is of measure > and conse
quently the complementary set C (F) of measure < 
Then for ö < J()

F C(F)

C(F)

When the identity of the class Cs (A) with the class 
of S. a. p. functions has been established the next problem 
which arises is to find a simple algorithm which, applied 
to an arbitrary S. a. p. function f(x), gives a sequence of 
finite sums sn (x) tending to f(x) in the sense of the limit 
process characteristic of the class, i. e. such that

S-lim sn(x) = f(x),

The above proof evidently provides a mean of con
structing such a sequence. For the above functions </ff(.r) 

+ cT
— -x \ f('£)d'£, being ordinary a. p. unctions, can in ac- 

UX
cordance with § 1 be approched within an arbitrarily small 
F-distance (and a fortiori within an arbitrarily small S-
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distance) by Fejér sums of their Fourier series. Therefore 
by first taking ô sufficiently small and then approximating 
sufficiently closely to by a Fejér sum, we shall ob
tain finite sums whose 5-distance from /’(.r) can be made 
arbitrarily small. This process can be regarded as an algo
rithm on the Fourier series of /(.v) itself, since the Fourier 
series of yj'(x) involved can be obtained at once from 
this series by a formal integration :

(19) -J'Aæ) -2^,. ; z- d e* 7--

J \
—z---- r stands for 1 when Av — 0 . This follows from\ iAvo /

the obvious equation

already used by Bohr ([1], p. 62; for a. p. functions and 
by StepanofT for 5. a. p. functions.

The above algorithm for the construction of a sequence 
sn (a?) is complicated by the presence of the parameter J. 
This complication can be avoided; we shall show that me 
may use as approximating sums the Fejér sums of f(x) it
self, instead of the Fejér sums of the functions

For this purpose we first prove that the relation given 
in § 1 between the Fourier exponents and the translation 
numbers of an a. p. function holds also for an S. a. p. function ; 
in other words that :

“If als a2, ... is a base of the Fourier exponents 
of an S. a. p. function f(x), then to any e > 0 correspond 
integers P, Q and a positive number 6 < tt such that every 
solution of the system of diophantine inequalities
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< ô (mod. 2r)

is an S-translation number of f(x)".

We take a y(j (æ) such that Ds[f(x), ÿj'Cæ)] < e

6’
every S-translation number of (x) l and a fortiori

Then

every

to 

ÿj'(æ), which by (19) also 
as a base for its Fourier ex-

£
[-translation number of yj(x)) belonging to — is also an 

S-translation number of /(.r) belonging to —. We have now 

only to apply the theorem of § 1 pvith in place of 

the (ordinary) a. p. function 
has the sequence at, «2, . . .
ponents.

Using the notation of § 1 we write

s (X) = M 'fa + f) nni ( “1, f)... //„„ t) I

where

/ ^1and A,,, as before, denotes zero when v . u1 ■ . . 
\ . x'i ' . \
is not one of the Fourier exponents of /*(æ) j.

prove, just as in § 1, that

We shall

S-lim s (t) = f(x)

provided only p, A\, AT2, . . . , nt, n2, ... tend to oc to

gether in such

For any x

a

at

may that

which /(.t) is defined (and so for almost
all values of x) we have
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s (x) -f(x) = M ! (f(x + t) -f(x)) n (/) ;

and therefore

I s (x) — /'(x) I M {\f(x + t) — f(x) I n (t) } ;

the mean value on the right exists, since |/(x+0— f(x) | 
is plainly an S. a. p. function of /. Thus for every x

(20) \ |s(?)-/-(î)|rfj<\ .v[|/G + 0-/-(4)|//

We shall show that the last integral is less than or equal to

fix 4* 1

(21) \fti + f)-f($)\d$};
t)x

(this mean value also exists since 

even an ordinary a. p. function of 0- We have

T +1

/7(i)di \ ire+o—/(j)|rfs
— T tJ.r

f *.r + 1 • /

\ d s 27 \ I /'G + 0 - I " (0 dt-

As 7' > oc the left side of (22) and therefore also the right 
side tends to (21). But the limit of the right hand side is, 
by a theorem of Fatou1 greater than or equal to

fix 4" 1 i • T

\ rfjlimd=\ I/(J+ /)-/■(?) I IJ(t)<ll
♦J.r 1 V—T

' If fn (,t) > 0 in (a, b) and fn (x) f(x) then
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Thus by (20)
rtx + 1 r»x’ -r 1
\ IS (j)-/■(?) I </s < a/{n (I) \ I f(s + 0 - /■(■£) I d's}. 
f/.r 9 .r

Dividing the /-axis, as in § 1, into two sets Ir, I2 and 
writing //(/) = II' (/) + 11 " (0 as before we have

f(x)] M{ns[fÇx+t), f(x)]ri'(t)}

+ M{ Bs [f(x + f), f(x)] n" (t) } .

This inequality differs from the inequality (9) of § 1 only 
in having D[; replaced by I)s. Since further the distance

I)s\f(x+t), f(x)]

is < in /t and < 2 Æ in f2 ' K is l)s f(x) ) , the rest of 

the proof is word for word the same as that of § 1.
In conclusion we may remark that the above “sum

mation theorem” implies the “uniqueness theorem” (see 
Stepanoff) which states that an S. a. p. function is uniquely 
determined by its Fourier series. For if two functions are 
both S-limits of the same sequence (Fejér sums of the 
given Fourier series) their S-distance must be zero and 
consequently they are equivalent, i. e. equal almost every
where.
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